5(x+1)+4x^2+4x+3=3(x+3)

Simple and best practice solution for 5(x+1)+4x^2+4x+3=3(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x+1)+4x^2+4x+3=3(x+3) equation:



5(x+1)+4x^2+4x+3=3(x+3)
We move all terms to the left:
5(x+1)+4x^2+4x+3-(3(x+3))=0
We add all the numbers together, and all the variables
4x^2+4x+5(x+1)-(3(x+3))+3=0
We multiply parentheses
4x^2+4x+5x-(3(x+3))+5+3=0
We calculate terms in parentheses: -(3(x+3)), so:
3(x+3)
We multiply parentheses
3x+9
Back to the equation:
-(3x+9)
We add all the numbers together, and all the variables
4x^2+9x-(3x+9)+8=0
We get rid of parentheses
4x^2+9x-3x-9+8=0
We add all the numbers together, and all the variables
4x^2+6x-1=0
a = 4; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·4·(-1)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{13}}{2*4}=\frac{-6-2\sqrt{13}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{13}}{2*4}=\frac{-6+2\sqrt{13}}{8} $

See similar equations:

| 3.9+10m=6.21 | | (2x10)+3+(2x+5)+(2x-15)=180 | | c/9.1=7.2 | | (2b-90)+3/2b+b+(b+45)=540 | | 90x=60x+480-10 | | 4z+16=6z+4 | | -3(x+20)=-90 | | –(8m+4)=4m–2(6m+2) | | 2x-1=1-2x-3 | | –5a−–11a+3=9 | | 25x2=225 | | 1/3(6x-3)+4=5(x+9) | | 52=3x+1 | | m/3-2=-15 | | 30x^2=20x | | 4x+16x-4=4(5x+6) | | -105(1+4x)=-5 | | 3(x-2)=(x-3) | | -(1x+7)-6(7-x)=36 | | 2x/9+1/3=-1/6 | | 5-2x+-4x+9=100 | | p-8/1=-2 | | 2r-4r+8+r=0 | | 3n-18=-2n+4n^2 | | x+6=X+6=3x-31 | | 3=h-7-9h+11 | | -12=-7x+2 | | 4+6q=9.5q | | 8x+30=6x-5 | | -3(6-4k)-5(2k-6)=2k+12 | | 2n/7=-4 | | 32/(x^2-8x)+7/x=4/(x-8) |

Equations solver categories